(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(head(x1)) = 2 + 2·x1
POL(incr(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__nats) = 0
POL(n__odds) = 0
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = x1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
head(cons(X, XS)) → X
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = x1
POL(n__incr(x1)) = x1
POL(n__nats) = 0
POL(n__odds) = 0
POL(nats) = 0
POL(odds) = 0
POL(pairs) = 0
POL(s(x1)) = x1
POL(tail(x1)) = 2 + 2·x1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
tail(cons(X, XS)) → activate(XS)
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ODDS → INCR(pairs)
ODDS → PAIRS
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__nats) → NATS
ACTIVATE(n__odds) → ODDS
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
ODDS → INCR(pairs)
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ODDS →
INCR(
pairs) at position [0] we obtained the following new rules [LPAR04]:
ODDS → INCR(cons(0, n__incr(n__odds)))
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
ODDS → INCR(cons(0, n__incr(n__odds)))
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ACTIVATE(
n__incr(
X)) →
INCR(
activate(
X)) at position [0] we obtained the following new rules [LPAR04]:
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__nats)) → INCR(nats)
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(x0)) → INCR(x0)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
ODDS → INCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__nats)) → INCR(nats)
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(x0)) → INCR(x0)
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) Narrowing (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ACTIVATE(
n__incr(
n__nats)) →
INCR(
nats) at position [0] we obtained the following new rules [LPAR04]:
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__nats)) → INCR(n__nats)
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
ODDS → INCR(cons(0, n__incr(n__odds)))
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
ACTIVATE(n__incr(n__nats)) → INCR(n__nats)
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__odds) → ODDS
ODDS → INCR(cons(0, n__incr(n__odds)))
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(n__incr(x0))) → INCR(incr(activate(x0)))
ACTIVATE(n__incr(n__odds)) → INCR(odds)
ACTIVATE(n__incr(x0)) → INCR(x0)
ACTIVATE(n__incr(n__nats)) → INCR(cons(0, n__incr(n__nats)))
The TRS R consists of the following rules:
nats → cons(0, n__incr(n__nats))
pairs → cons(0, n__incr(n__odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
nats → n__nats
odds → n__odds
activate(n__incr(X)) → incr(activate(X))
activate(n__nats) → nats
activate(n__odds) → odds
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ACTIVATE(
n__incr(
n__nats)) evaluates to t =
ACTIVATE(
n__incr(
n__nats))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceACTIVATE(n__incr(n__nats)) →
INCR(
cons(
0,
n__incr(
n__nats)))
with rule
ACTIVATE(
n__incr(
n__nats)) →
INCR(
cons(
0,
n__incr(
n__nats))) at position [] and matcher [ ]
INCR(cons(0, n__incr(n__nats))) →
ACTIVATE(
n__incr(
n__nats))
with rule
INCR(
cons(
X,
XS)) →
ACTIVATE(
XS)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(18) NO